## RARE DISEASES AND ORPHAN DRUGS



#### SILVIO GARATTINI



Bologna 7th March 2018

#### WHY RARE DISEASES SHOULD BE STUDIED?

- All the patients independently from the type of their disease have the right to be cured
- They furnish information useful also for common diseases
- They represent the future: an example of personalized medicine

## 1983 U.S.A. GOVERNMENT APPROVES "ORPHAN DRUGS ACT" TO BOOST THERAPIES FOR RARE DISEASE PREVALENCE < 200,000 PEOPLE

## 1992 THE MARIO NEGRI INSTITUTE **ESTABLISHES** A CLINICAL RESEARCH CENTER FOR RARE DISEASES

### LE SEDI



Mario Negri MILANO



Mario Negri BERGAMO



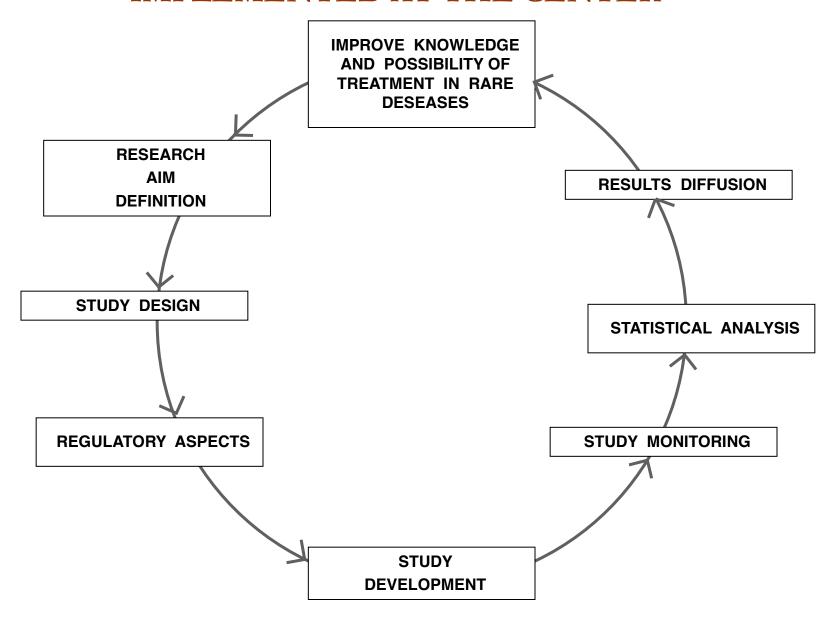
Centro per le Malattie Rare "Aldo e Cele Daccò" RANICA (BG)



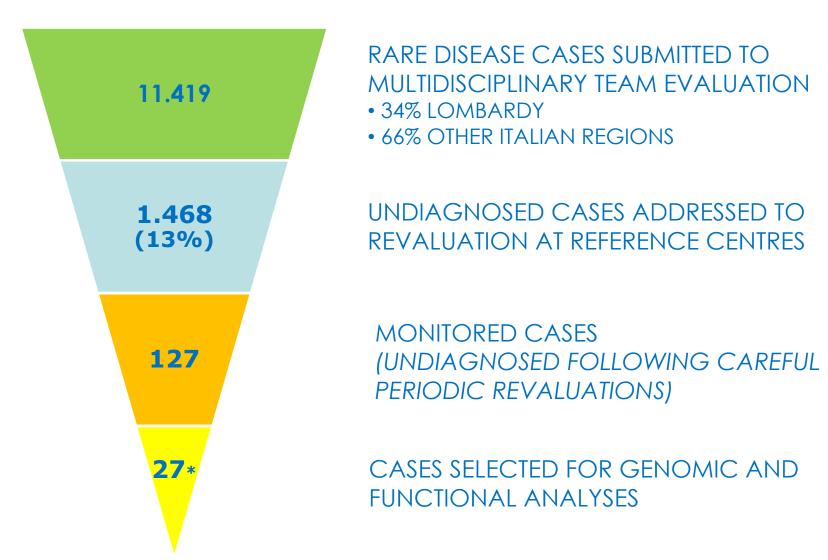
Centro Ricerche Trapianti RANICA (BG)






#### THE CLINICAL RESEARCH CENTRE FOR RARE DISEASES

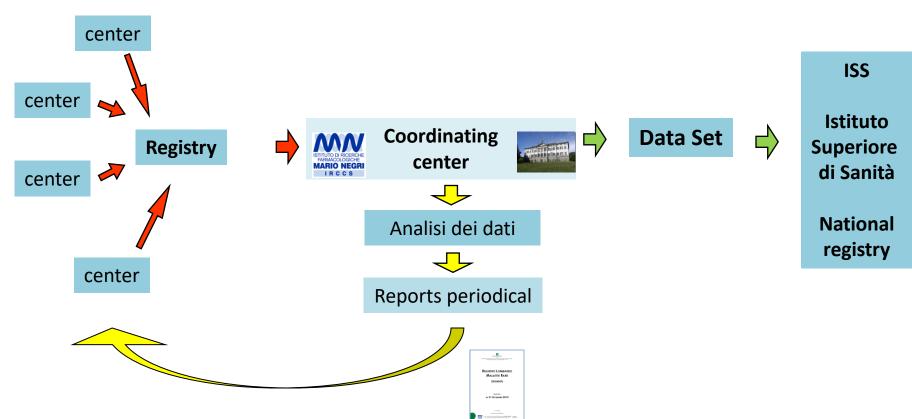



**Since 2001** 

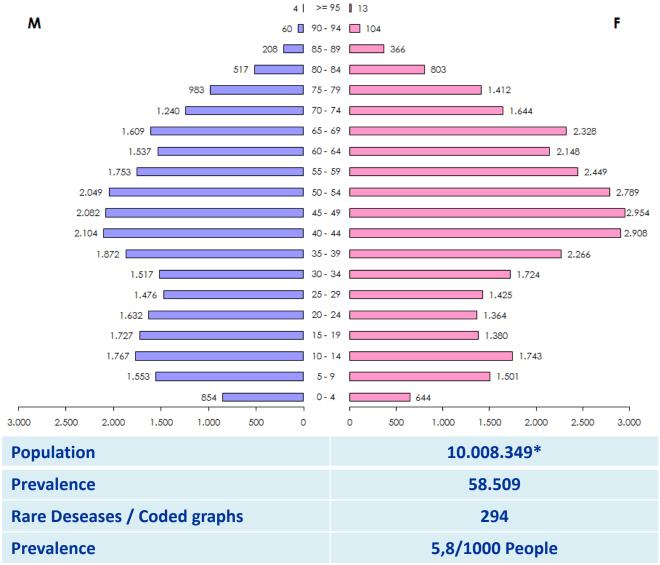
COORDINATING CENTRE OF THE LOMBARDY NETWORK FOR RARE DISEASES

## EXPERTISE AND ORGANIZATIONAL SUPPORT IMPLEMENTED AT THE CENTER




## THE DATABASE OF THE DOCUMENTATION CENTRE FOR RARE DISEASES (1993-2017)



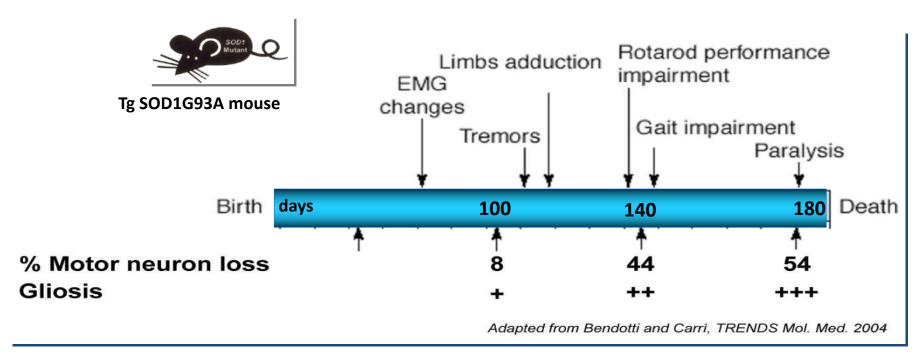

<sup>\* 1</sup> patient enrolled in NIH Undiagnosed diseases program

#### RETE REGIONALE MALATTIE RARE





# REGISTRO LOMBARDO MALATTIE RARE DISTRIBUZIONE DEI PAZIENTI IN LOMBARDIA AL 31/12/2015 (ETÀ E GENERE)

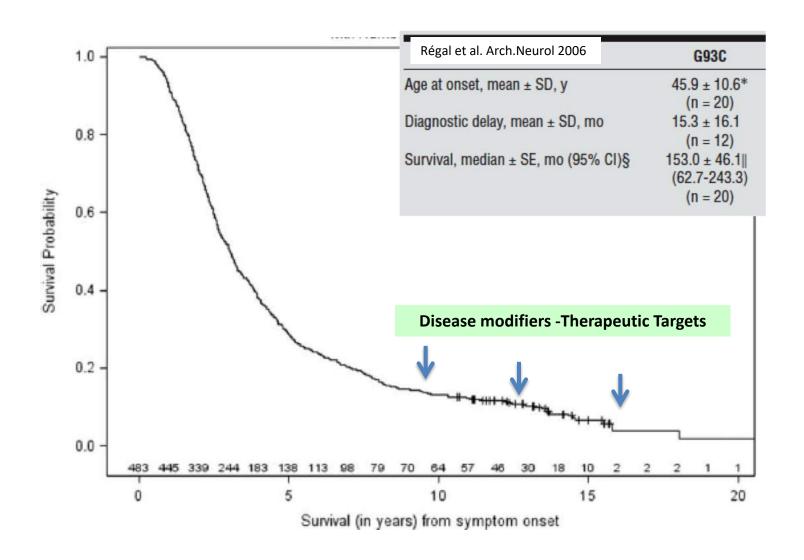



# EXPERIMENTAL AND CLINICAL STUDIES AT THE MARIO NEGRI INSTITUTE

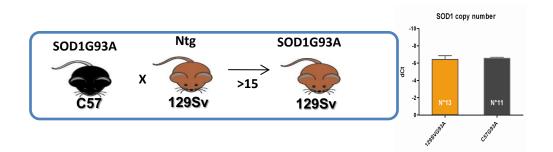
- HUS
- MEMBRANOUS GLOMERULONEPHRYTIS
- SYSTEMIC AMYLOIDOSIS
- FABRY DISEASE
- CEREBRAL CAVERNOUS MALFORMATIONS
- PRIONS DISEASES
- ALS
- RETT SYNDROME

- SMA
- EFI
- LIPOFUSCINOSI
- MOLIBDO DEFICIENCY
- APL
- MYXOID LIPOSARCOMAS
- MESOTHELIOMAS
- THYMOMAS
- B-LYMPHOMAS
- UTERINE LEIOMYOSARCOMAS
- OVARIAN CANCER

#### Transgenic SOD1 mutant mouse, the first animal model of fALS

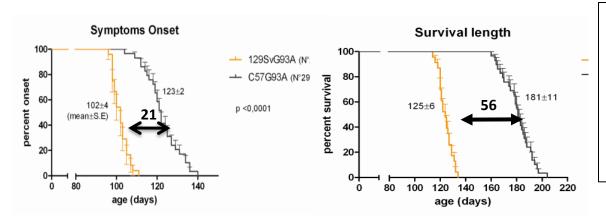



#### Similarities and differences with human fALS


- Loss of lower MN
- Reactive gliosis
- Ubiquitinated inclusions
- Loss of glutamate transporter
- Oxidative damage
- Neuroinflammation

- Lack of upper MN loss
- Hyper-vacuolization
- Overexpression of mutant SOD1

### Variable disease course in ALS patients



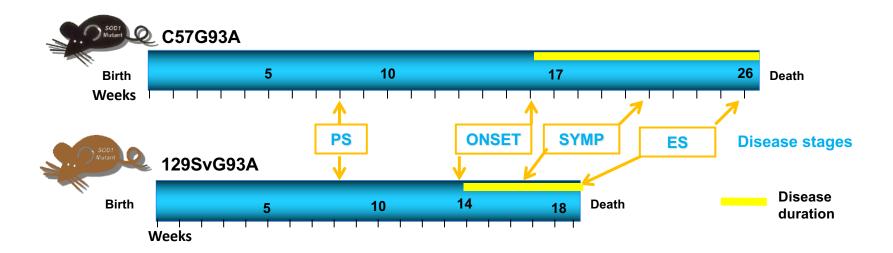

## Variable disease course in two mouse models of ALS: a udseful paradigm to identify potential disease modifiers





- ✓ Reduced protein catabolism
- ✓ Massive mitochondrial dysfunction
- ✓ Impaired nerve regeneration
- ✓ Massive NMJs denervation

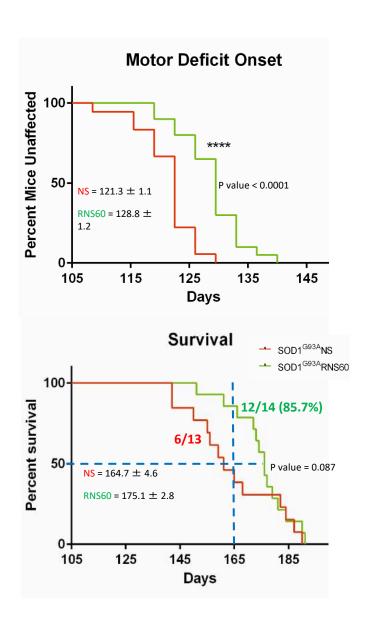


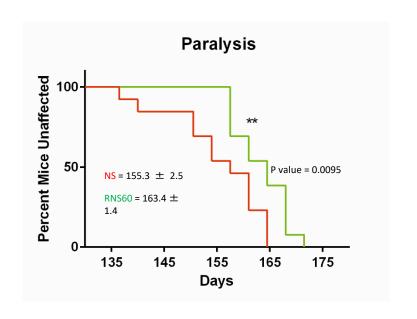

#### Slow progressor at onset

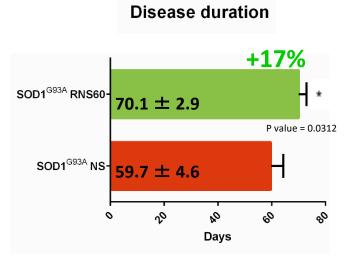
- ✓ prompt immune response in PNS
- ✓ Increase motor axons regeneration
- Early activation of neurotrofic factor

Nardo et al. Brain 2013 Marino et al. Neurobiol Aging 2015 Caron et al. PLoS One 2015 Nardo et al. Brain Pathol 2016 Nardo et al. J Neuroinflamm 2016

#### Variable disease course in two mouse models of ALS:


a usefulparadigm to identify potential disease modifiers, prognostic disease biomarkers, therapeutic targets





#### Potential mechanisms for slowing down the disease course

- Increase the protein quality
- Protection of mitochondria
- Activation of immune response in peripheral motor axons
- Increase of neurotrofic factor

### RNS60 delays neuromuscular impairment and prolong survival in SOD1G93A mouse model







# RNS60 A new agent with anti-inflammatory properties Mechanism of action

- Activation of protective glial cells
- Immune system modulation

increase of Tregs
Reduction of Th17 cytokines

- Reduction of demyelination
- Mitochondrial protection and increased biogenesis
- Activation of antioxidant response

### Clinical Trial with RNS60 Study Design

- Multicenter, randomized, double-blind, placebo-controlled, parallel group, add-on trial.
- Eligible patients (total 142) have definite or probable ALS (revised El Escorial criteria), disease duration 6 to 24 months, self sufficiency (measured by the ALS-FRS-R scale) and satisfactory bulbar function.
- Subjects will be randomly assigned to receive treatment with either RNS60 or placebo while concomitantly taking riluzole (50-mg tablet twice a day).
- Eligible patients currently treated with edaravone will not be included.

# ONLY AFTER 17 YEARS EUROPE FOLLOWS U.S.A.

**OFF J.Eur.Communities** 

2000; L18:1

#### EC Regulation 141/2000

### Orphan medicinal products

designation by the Comp at the Ema

#### **Criteria for designation**

• That it is intended for the diagnosis, prevention or treatment of a life-threatening or chronically debilitating condition that affects not more than 5 in 10,000 people in the Community when the application is made ('prevalence criterion')

or

• That it is intended for the diagnosis, prevention or treatment of a life-threatening, seriously debilitating or serious and chronic condition and that without incentives it is unlikely that the marketing of the medicinal product in the Community would generate sufficient return to justify the necessary investment ('insufficient return on investment criterion')

and, in addition,

• That there exists no satisfactory method of diagnosis, prevention or treatment of the condition in question that has been authorized in the Community ('no satisfactory method criterion')

or

• If such a method exists, that the medicinal product will be of significant benefit to those affected by that condition ('significant benefit criterion')

#### EC Regulation 141/2000

### **Incentives**

**Protocol assistance:** access to free-of-charge protocol assistance at the EMA.

The centralized procedure is compulsory (as of 20 November 2005) for all orphan medicinal products to be authorized via a centralized procedure, which gives access to 29 countries in Europe (27 EU member states, including Norway and Iceland). Marketing authorization applications for orphan medicinal products in Europe currently also benefit from a reduction in the regular fee.

**Market exclusivity** (10-year) protects against a 'similar' drug being authorized in the EU for the same therapeutic indication. Three derogations from this rule exist: first, the sponsor's consent; second, a lack of supply; third, if a new product, although similar, could be demonstrated to be 'clinically superior'

- that is, "safer, more effective or otherwise clinically superior" to the product already on the market.

#### **National incentives**

**Community research programmes** support Europe-wide studies of the natural history of a rare disease and its pathophysiology, and the development of preventive, diagnostic and therapeutic interventions.

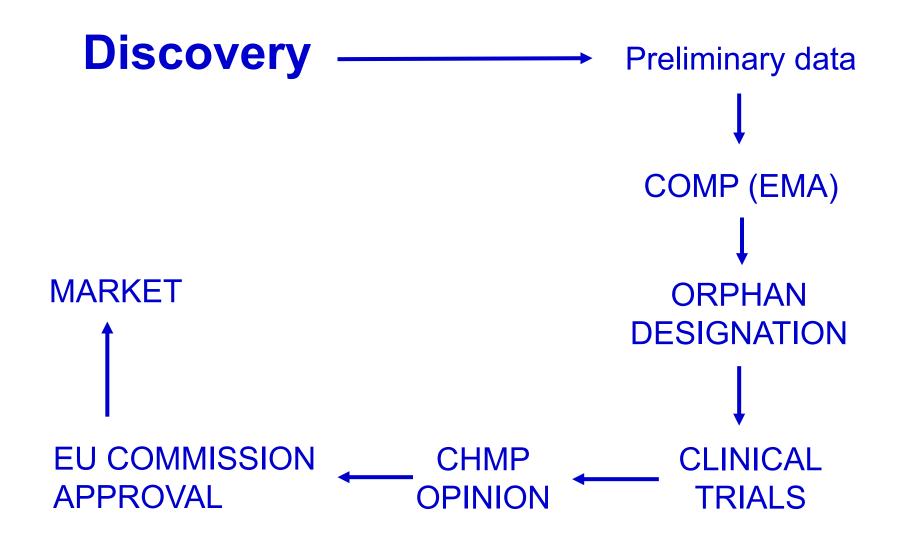
1/2.000 UE

1/1.250 US

1/2.500 **JAPAN** 

1/15.000 **Australia** 

# ACCORDING TO THE EU LAW A RARE DISEASE IS REPRESENTED BY THE PREVALENCE OF

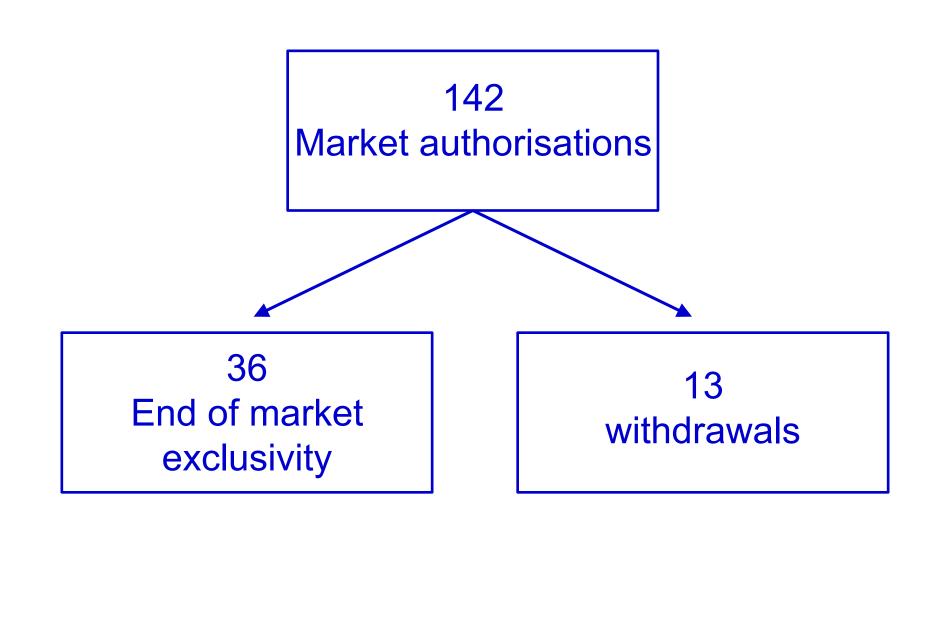

<5/10,000

(<250,000 PATIENTS)

### IT IS SUGGESTED TO MODIFY THE PREVALENCE

<5/100,000

(<25,000 PATIENTS)



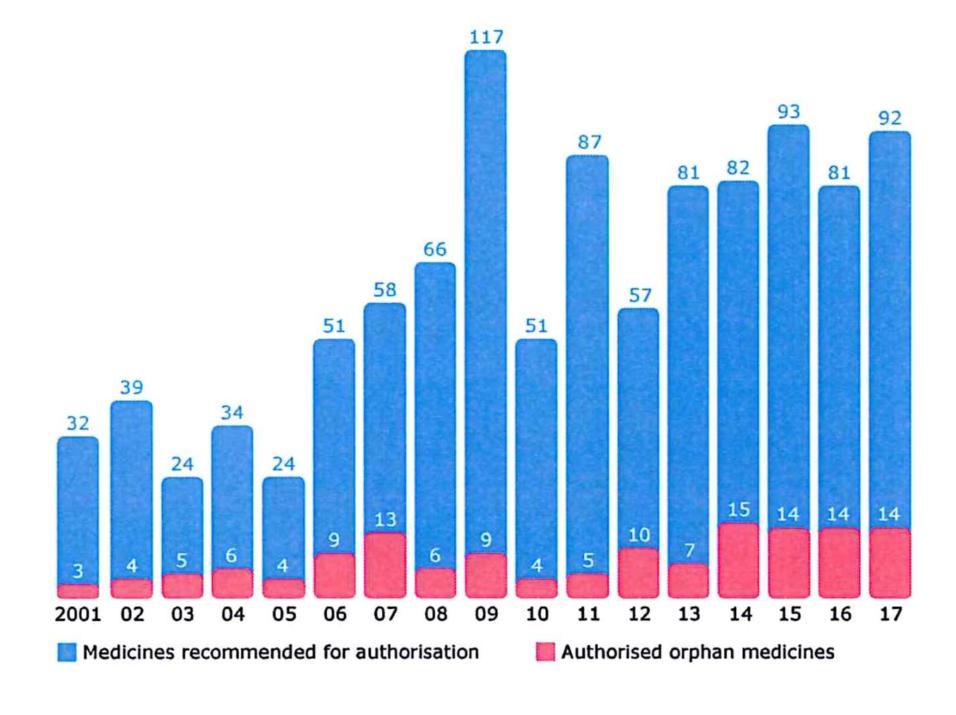

#### 5.000 - 8.000 RARE DISEASES

27 - 36 MILION PATIENTS

#### 1900 ORPHAN DESIGNATIONS

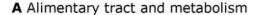
# 141 ORPHAN DRUGS APPROVED AFTER 17 YEARS



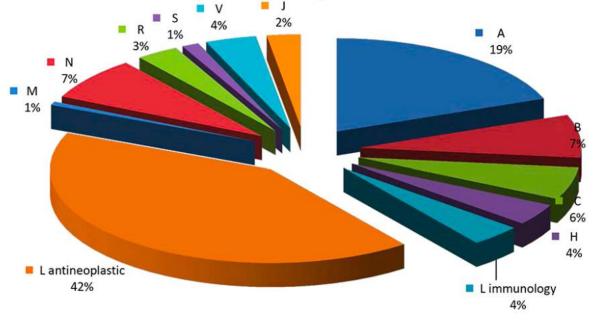

# 1900 medicines with orphan designation

### EMA's Committee for Orphan Medicines

The Committee for Orphan Medicinal Products (COMP) is in charge of reviewing applications for orphan designation.


# orphan medicines authorised in the EU

How orphan medicines reach patients






### 142 initial orphan marketing authorisations and 20 extension of indication granted to date



- **B** Haematology
- C Cardiovascular system
- H Systemic hormonal
- J Anti-infectives for systemic use
- **L** Immunology
- L Antineoplastic
- M Musculo-skeletal system
- N Nervous system
- R Respiratory system
- S Sensory organs
- V Various



Number of conditions: 111

Active orphan MA: 94

#### Chart includes:

13 authorised extensions of indication

Active extension of indication: 13

13 withdrawals from the register of orphan medicinal products (including 6 ext. of indication)

5 withdrawals from register medicinal products human use

36 removals of initial MAA from register after expire of the market exclusivity period & 1 ext of indication

## Characteristics of Pivotal Preapproval Trials of Orphan and Nonorphan Cancer Drugs

No. (%)<sup>a</sup>

| Characteristics                                                             | Orphan Drug Pivotal Trials (n = 23) | Nonorphan Drug<br>Pivotal Trials<br>(n = 15) |
|-----------------------------------------------------------------------------|-------------------------------------|----------------------------------------------|
| Primary trial end point reported <sup>b</sup> Disease response <sup>c</sup> | 17 (68)                             | 4 (27) 7                                     |
| Disease progression <sup>d</sup>                                            | 4 (16)                              | 6 (40)                                       |
| Overall survival                                                            | 2 (8)                               | 4 (27)                                       |
| Other                                                                       | 2 (8)                               | 1 (7)                                        |

Kesselheim et al., 2017

## Characteristics of Pivotal Preapproval Trials of Orphan and Nonorphan Cancer Drugs

|                 | No. (%) <sup>a</sup>                      |                                              |  |
|-----------------|-------------------------------------------|----------------------------------------------|--|
| Characteristics | Orphan Drug<br>Pivotal Trials<br>(n = 23) | Nonorphan Drug<br>Pivotal Trials<br>(n = 15) |  |
| Blinding        |                                           |                                              |  |
| Double-blind    | 1 (4)                                     | 5 (33) 7                                     |  |
| Single-blind    | 1 (4)                                     | 0                                            |  |
| Open-label      | 21 (91)                                   | 10 (67)                                      |  |

Kesselheim et al., 2017

## Characteristics of Pivotal Preapproval Trials of Orphan and Nonorphan Cancer Drugs

| No. | (%)     | a  |
|-----|---------|----|
|     | ( , 0 ) | N. |

|                 | 117                                 |                                        |  |
|-----------------|-------------------------------------|----------------------------------------|--|
| Characteristics | Orphan Drug Pivotal Trials (n = 23) | Nonorphan Drug Pivotal Trials (n = 15) |  |
| Comparator      | War 1 = 10                          |                                        |  |
| Active          | 4 (17)                              | 7 (47)                                 |  |
| Supportive care | 2 (9)                               | 1 (7)                                  |  |
| Placebo         | 1 (4)                               | 4 (27)                                 |  |
| None            | 16 (70)                             | 3 (20)                                 |  |

| Active principle | Rare disease                                                          | Patients studied | Potential cases in EU |
|------------------|-----------------------------------------------------------------------|------------------|-----------------------|
| miglustat        | Type 1 Gaucher disease and Niemann-Pick type C disease                | 28               | 10,000                |
| velaglucerase    | Gaucher disease                                                       | 35               | 15,000                |
| algasidase alpha | Fabry disease                                                         | 41               | 10,000                |
| algasidase beta  | Fabry disease                                                         | 56               | 10,000                |
| clofarabine      | Acute lymphoblastic leukaemia in paediatric patients                  | 61               | 10,000                |
| neralabine       | T-cell acute lymphoblastic leukaemia or T-cell lymphoblastic lymphoma | 100              | 50,000                |
| eltrombopag      | thrombocytopenic purpura                                              | 150              | 50,000                |
| romiplostim      | thrombocytopenic purpura                                              | 150              | 50,000                |
| icatibant        | hereditary angioedema                                                 | 150              | 50,000                |
| sapropterin      | hyperphenylalaninemia                                                 | 150              | 50,000                |

| Drug             | Repeated dosetoxicology      | Exposure      | Genotoxicity   | Carcinogenicity         | Reproduction toxicity            |
|------------------|------------------------------|---------------|----------------|-------------------------|----------------------------------|
| Agalsidase alpha | Rabbits, rats,<br>monkeys    | 2–26 weeks    | NA             | NA                      | Yes (not<br>conclusive)          |
| Agalsidase beta  | Rats                         | 27 weeks      | NA             | NA                      | NA                               |
| Anagrelide       | Rats, monkeys,<br>dogs       | 12–52 weeks   | Yes (negative) | NR                      | Yes (negative)                   |
| Arsenic trioxide | Mice, rats, dogs,<br>monkeys | Not specified | Yes (positive) | NR                      | NR                               |
| Bosentan         | Rats, dogs,<br>marmosets     | 1–4 weeks     | Yes (negative) | Yes (negative)          | Yes (+ in rats,<br>– in rabbits) |
| Busulfan         | Dogs                         | 4 days        | NA             | NR                      | Yes (positive)                   |
| Carglumic acid   | Rats                         | 2–18 weeks    | Yes (positive) | Yes (negative)          | Yes (not<br>conclusive)          |
| Celecoxib        | Rats, dogs                   | 24–52 weeks   | Yes (negative) | Yes (not<br>conclusive) | Yes (positive)                   |
| Cladribine       | Mice                         | 4 weeks       | Yes (positive) | NR                      | Yes (positive)                   |

Joppi et al, 2006

| Drug         | Repeated dosetoxicology | Exposure    | Genotoxicity                     | Carcinogenicity         | Reproduction toxicity   |
|--------------|-------------------------|-------------|----------------------------------|-------------------------|-------------------------|
| Ibuprofen    | NR                      | NR          | Yes (negative)                   | Yes (negative)          | Yes (negative)          |
| lloprost     | Rats, dogs              | 24–52 weeks | Yes (negative)                   | Yes (negative)          | Yes (positive)          |
| Imatinib     | Monkeys                 | 39 weeks    | Yes (+ in vitro<br>and –in vivo) | Ongoing                 | Yes (positive)          |
| Laronidase   | Dogs, monkeys           | 8–26 weeks  | NA                               | NA                      | Yes (not<br>conclusive) |
| Miglustat    | Rats, monkeys           | 4–52 weeks  | Yes (negative)                   | Yes (negative)          | Yes (positive)          |
| Mitotane     | NA                      | NA          | NA                               | NA                      | NA                      |
| Pegvisomant  | Rats, monkeys           | 24 weeks    | Yes (negative)                   | NA                      | Yes (negative)          |
| Porfimer     | Rats, dogs              | 13 weeks    | Yes (positive)                   | NA                      | Yes (negative)          |
| Zinc acetate | Rats                    | 53 weeks    | Yes (not<br>conclusive)          | Yes (not<br>conclusive) | Yes (negative)          |

Joppi et al, 2006

### European Reference Networks (ERNs)

| ERN                                                                                  | HCP<br>Italia | HCP<br>Lombardia |
|--------------------------------------------------------------------------------------|---------------|------------------|
| <b>ERN BOND</b> - European Reference Network on bone disorders                       | 7             | 1                |
| ERN CRANIO - European Reference Network on craniofacial anomalies and ENT disorders  | 6             | 3                |
| <b>Endo-ERN</b> - European Reference Network on endocrine conditions                 | 9             | 2                |
| ERN EpiCARE - European Reference Network on epilepsies                               | 5             | 2                |
| <b>ERKNet</b> - European Reference Network on kidney diseases                        | 11            | 2                |
| <b>ERNICA</b> - European Reference Network on inherited and congenital anomalies     | 1             |                  |
| <b>ERN EURACAN</b> - European Reference Network on adult cancers (solid tumors)      | 17            | 4                |
| <b>ERN EuroBloodNet</b> - European Reference<br>Network on haematological diseases   | 21            | 5                |
| <b>ERN eUROGEN</b> - European Reference Network on urogenital diseases and condition | 4             | 1                |
| <b>ERN EYE</b> - European Reference Network on eye diseases                          | 6             |                  |
| <b>ERN GENTURIS</b> - European Reference Network on genetic tumor risk syndromes     |               |                  |
| ERN GUARD-HEART - European Reference<br>Network on diseases of the heart             | 6             | 3                |

| ERN                                                                                                         | HCP<br>Italia | HCP<br>Lombardia |
|-------------------------------------------------------------------------------------------------------------|---------------|------------------|
| <b>ERN ITHACA</b> - European Reference Network on congenital malformations and rare intellectual disability | 8             | 1                |
| ERN RARE-LIVER - European Reference Network on hepatological diseases                                       | 3             | 2                |
| <b>ERN LUNG</b> - European Reference Network on respiratory diseases                                        | 15            | 2                |
| <b>MetabERN</b> - European Reference Network on hereditary metabolic disorders                              | 11            | 2                |
| <b>ERN EURO-NMD</b> - European Reference Network on neuromuscolar diseases                                  | 15            | 5                |
| ERN PaedCan - European Reference Network on paediatric cancer (haemato-oncology)                            | 9             | 2                |
| <b>ERN ReCONNET</b> - European Reference Network on connective tissue and muscoloskeletal diseases          | 8             | 3                |
| <b>ERN RITA</b> - European Reference Network on immunodeficiency, autoinflammatory and autoimmune diseases  | 5             | 3                |
| ERN RND - Eurpean Reference Network on neurological diseases                                                | 4             | 2                |
| <b>ERN Skin</b> - European Reference Network on skin disorders                                              | 6             | 1                |
| <b>ERN TRANSPLANT-CHILD</b> - European Reference<br>Network on transplantation in children                  | 3             | 1                |
| VASCERN - European Reference Network on multisystemic vascular diseases                                     | 6             | 3                |

## The present system does not allow an efficient conduct of clinical trials

### There is a need to carry out clinical trials

- timely
- rapidly
- with no deadlines (no restriction to 3-5 years)
- with adequate financial support
- addressing patients and public health needs
- addressing comparative effectiveness
- independent from pharma companies

# A SPECIAL AREA SHOULD BE MADE AVAILABLE WITHIN FP9 OR OTHER KIND OF EU RESEARCH PROGRAMS ONLY FOR INDEPENDENT TRIALS

THE FUND SHOULD NOT HAVE DEADLINES.
PROPOSALS SHOULD BE EVALUATED BY
AN INDEPENDENT COMMITTEE MADE UP
BY CLINICIANS AND METHODOLOGISTS
EXPERT IN RCTs.

# NEED FOR INDEPENDENT CLINICAL RESEARCH

THE AMOUNT OF AT LEAST 1 BILLION EURO (<0,3% OF EU PHARMACEUTICAL MARKET)

DEVOTED TO NON-PROFIT INDEPENDENT

RESEARCH ON RANDOMIZED CONTROLLED

CLINICAL TRIALS OF ORPHAN DRUGS

IMPRENDITORIAL NON-PROFIT COMPANIES MADE UP BY DIFFERENT INSTITUTIONS SUPPORTED BY PUBLIC AND CHARITY FUNDS TO PRODUCE NEW ORPHAN DRUGS AT LOW PRICES